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We study the random motion of a tracer particle in a two-dimensional dense 
lattice gas. Repeated encounters of a single vacancy displace the tracer particle 
from its initial position by a vector y of which we calculate the time-dependent 
distribution Pt(Y). On an infinite lattice and for large times 
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where K0 is a modified Bessel function. The same problem is studied on a finite 
L x L lattice with periodic boundary conditions; there P~(y) is shown to be a 
Gaussian on a time scale L 2 In L. On an Go x L strip and for large times, P,(y) is 
an explicitly given (but nonelementary) function of the scaling variable 

= yfft 114, identical to the function occurring in the problem of a random 
walker on a random one-dimensional path. 

KEY WORDS: Tracer diffusion; two-dimensional lattice gas; correlated 
Brownian motion; vacancy. 

1. INITRODUCTION 
W e  c o n s i d e r  a s q u a r e  la t t ice  o f  wh ich  each  site excep t  one is filled wi th  a 

p a r t M e .  T h e  e m p t y  site is re fer red  to as the  "ho le . "  T h e  par t ic les  ca r ry  ou t  

B r o w n i a n  m o t i o n ,  subjec t  to  the  c o n d i t i o n  tha t  each  site can  be  at  m o s t  

s ingly occup ied .  M o r e  specif ical ly,  we s t ipu la te  t ha t  at  each  ins t an t  of  t ime  

t = 1, 2, 3 .... one  par t ic le ,  se lec ted  wi th  p r o b a b i l i t y  1/4 f r o m  a m o n g  the  four  

p a r t M e s  a d j a c e n t  to  the  hole ,  will  m o v e  in to  it. T h e n  the  ho le  o b v i o u s l y  
p e r f o r m s  a s imple  r a n d o m  walk.  

1 Instituut-Lorentz, Rijksuniversiteit te Leiden, 2300 RA Leiden, The Netherlands. 
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We now select and "tag" one particle, the "tracer particle," whose 
motion we want to follow. This motion depends on the trajectory of the 
hole in a complicated way: the tagged particle can move only when it is 
encountered by the hole, and its successive moves will be correlated. 
Evidently, from the point of view of the tagged particle, the hole is more 
likely to return for its next encounter from the direction in which it has left 
than from a perpendicular or opposite direction. On a two-dimensional 
lattice, the tagged particle will, with probability 1, make an infinite number 
of steps, even in the presence of just one vacancy. In this work we calculate 
the probability P,(y) that at time t the tagged particle be displaced a 
distance y = (Yl, Y2) from its initial position. 

This problem can also be formulated for a three-dimensional lattice. 
However, the properties of the three-dimensional simple random walk 
ensure that, with probability 1, the hole will wander off to infinity only a 
finite number of encounters with the tagged particle, so that in an effec- 
tively finite time Pt(Y) tends to an equilibrium distribution P~(y)  with a 
spatial decay length of only a few lattice sites. A rapidly converging method 
for calculating this distribution (subject to the condition that there be an 
initial encounter between the vacancy and the tagged particle) has been 
given by Sholl. (1) On a three-dimensional lattice with a f ini te  but very small 
vacancy density, a tracer particle will be met by new vacancies at a con- 
stant average rate, and P~(y)  then is the essential ingredient in calculating 
its diffusion constant. (1'2) This problem is known in the literature as the 
tracer diffusion problem. A general theory for tracer diffusion in three 
dimensions has been given by Kehr etaL,  ~3~ who also present results of 
Monte Carlo calculations. 

In one dimension the tracer diffusion problem has a long history, 
which was reviewed by Van Beijeren etaL,  ~4) who report Monte Carlo 
calculations and present an approximate theory. The Green-Kubo relation 
between the diffusion constant and the velocity autocorrelation function of 
the tracer particle was exploited by Van Beijeren and Kehr. (5) 

In this work we deal exclusively with the interaction between a tracer 
particle and a single vacancy in two dimensions. Since this interaction 
extends infinitely in time, a correct understanding of it is a necessary prere- 
quisite for the study of finite vacancy densities. We summarize our results. 
On an infinite two-dimensional lattice, studied in Section 3, it appears that 
in the limit of large t and large y the distribution Pt(y) is a function only of 
the scaling variable 

q = y/(ln t) 1/2 (1.1) 

Most surprisingly, however, the scaling function is not a Gaussian but a 
modified Bessel function Ko. Its precise form, and the conditions under 
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which it is obtained, are given in Section 3.2.1. The deviation from 
Gaussian behavior indicates that even when separated by long time 
intervals, successive steps of the tagged particle cannot be considered as 
effectively uncorrelated. 

Second, we consider in Section 4 the same problem on a square lattice 
of L x L sites with periodic boundary conditions. In this case it is clear that 
for sufficiently large L there is an initial time scale where the hole does not 
notice that the lattice is finite and the analysis of the infinite lattice applies. 
At times t ~ L 2, however, the hole is likely to explore the full periodic 
lattice, after which it will return to the tagged particle from a completely 
uncorrelated direction. Since in two dimensions the time needed by a 
random walker to return to a specified lattice point a distance ~ L  away is 
,-~L 2 in L, we expect a subsequent time scale t >> L 2 In L on which the 
tagged particle performs diffusive motion and Pt(Y) is Gaussian. This is 
indeed what we find, and the corresponding diffusion constant is 

1 
D L =  

4(re - 1 ) L 2 
1.2) 

This behavior is followed by a crossover to a final time scale on which 
Pt(Y) flattens out to the stationary value 1/L  2 on each site; clearly the time 
scale for this to happen is t ~ L 4. In Section 4.3 we comment on our finite 
lattice calculation, and also make contact with work by Palmer, ~6~ who 
has proposed the same system within the framework of the study of 
constrained dynamics. 

Third, we study in Section 5 the same problem on a strip of finite 
width, i.e., an array of ~ • L sites. It there appears that in the limit of large 
t and large t Yll the distribution function P,(y) depends only on the scaling 
variable 

=t-~4 (1.3) 

and again is not  a Gaussian. Its precise form and the details of the 
calculation are given in Section 5.2. In Section 5.3 we comment on the strip 
calculation, and observe in particular that our result for the distribution 
function is identical, in the scaling limit, to what was found by Kehr and 
Kutner ~7) for a random walker on a one-dimensional random path! 
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2. FORMULATION OF THE PROBLEM 

Brummelhuis and Hilhorst 

2.1. The Distribution Function Pt(Y) 

The three lattice geometries to be considered are all special cases of a 
square lattice of L~ x L2 sites labeled by integer coordinates x-= (xl, x2), 
where 

xg=O, 1, 2,..., L i -  1, i = 1 , 2  (2.1) 

We shall impose periodic boundary conditions so that the origin is a site 
equivalent to all others. We introduce the two unit vectors 

e~ = (1, 0), e2 = (0, 1) (2.2) 

For the initial (t = 0) position of the tagged particle we take the origin, and 
we denote the initial position of the hole by Xo r 0. 

One approach to the motion of the tagged particle would be to write 
down the master equation for the joint distribution p~2)(y, x) of the tagged 
particle position y and the hole position x. Finding the relaxation modes 
and eigenvalues of this equation amounts to an L1L2(LIL2-1 )- 
dimensional matrix problem which, although perhaps not untractable, does 
not appear easy. Since, moreover, the information about the motion of the 
hole is redundant for our purpose, we shall focus directly upon the 
quantity of interest, viz. the reduced distribution function for the tagged 
particle position alone, 

P , (y )~  ~ Pl2)(y,x) (2.3) 
x(~y)  

This distribution no longer satisfies a master equation. It is nevertheless 
possible to derive an expression for it from which all desired information 
can be extracted. 

2.2. The Return Probabilities WT(6, 6') 

In tracer diffusion problems a key role is played by a set of conditional 
return probabilities (also called waiting time distributions) W~(8, x), where 
8 is one of the unit vectors + el, _+ %. For all x ~ 0 we define Wo(& x ) -  0; 
and, for z = 1, 2,..., we define W~(8, x), as the probability that a simple 
random walker initially at x r 0, (i) hits the origin for the first time at time 
~, and that, (ii) its position at ~ -  1 was 8. Continuous-time equivalents of 
these quantities occur, e.g., in refs. 1, 3, and 5. 

If for the simple random walker we take the hole initially at Xo ~ 0, 
and if the tagged particle is initially at the origin, then W~(8, x0) is the 
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probability that at time z the tagged particle will make its first step, and 
that this step is in the direction & But then at time r the hole is at a 
distance - 8  from the tagged particle, and the probability that the next step 
of this particle will take place at time z + r' and be in the direction 8' is 
W,,(8', - 8 ) .  We can continue in this way and, clearly, once the first step of 
the tagged particle has taken place, the 16time-dependent quantities 
W~(8, 8') (with 8, 8' nearest neighbor vectors) suffice to describe the 
motion of the tagged particle. From time-reversal invariance of the 
Brownian paths we have the symmetry property 

W,(8, 8 ' )=  W,(8', ~), z = 0, 1, 2 .... (2.4) 

Taking also into account the other symmetries of the problem, we find 
that, for each z, there are only five independent quantities, for which it will 
be convenient to introduce separate symbols, 

A~ - W,(el, el) 

A', = W,(e2, e:) 

B , -  W~(-e l ,  el) (2.5) 

B; = W~(-%,  %) 

C~ ~ W~(e2, el) 

The quantities A~ and A'~, B e and B'~, and CT describe the probability of a 
first return (after a time z) from directions which are opposite, equal, and 
perpendicular, respectively, to the direction of departure. In a square 
geometry (an L x L or an oc x oo lattice) the additional invariance under 
rotations over z/2 reduces the number of independent quantities to three, 
since then A',=A~ and B'~ = B~. In view of our calculation for a finite strip 
(Section 5), we shall pursue the general case here; the simplifications valid 
for a square geometry will be listed in Section 2.6. 

A number of quantities well known in the study of simple random 
walks can be expressed immediately in terms of the W~. First, 

FT(x) = ~ W,(6, x), r =0,  1, 2,..., x r  (2.6) 
6 

is the probability that a simple random walker initially at x r 0 will hit the 
origin for the first time at time z, regardless (for z ~> 1) of its position at 
time z - 1 .  Consequently, 1 -Z '~=o  F~(x) is the probability that a simple 
random walker initially at x has not yet reached the origin at time t. In 
Section 2.4 we shall employ the well-known relation between the generating 

822/53/1-2-17 
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functions of F~(x) and those of the simple random walk. With the aid of 
(2.5) two particular instances of (2.6) can be written as 

F,(e l )  = AT + B~ + 2C~ 

F~(%) = A" + B'~ + 2C~, ~=0,  1,2 .... 
(2.7) 

Second, let R~ be the probability that a simple random walker initially 
at the origin will return there for the first time after ~ steps. From the fact 
that the walker's first step is with equal probability to any of the neighbors 

of the origin, and from relation (2.7), we have that 

- 1 Z F  ~ 1(6) R ~ - 4  ~ - 

1 
= ~ ( A ~ _ I + A "  ~+B~_I+B" 1+4C~ ~), ,=1 ,2 , . . .  (2.8) 

Spitzer (8) has shown that R~ decays very slowly with ~. Explicitly, 

R ~ - [ I + ( - 1 ) ~ ]  ln2 ~ as r ~ o e  (2.9) 

Finally, since in two dimensions it is certain that a simple random 
walker will eventually arrive at a specified lattice site adjacent to its point 
of departure, we have the relation 

~ W~(6, 6 ' )=  1 (2.10) 
~ = 0  6 

Two things have to be done now: (i) we have to express Pt(Y) in terms 
of the W~(6, 6') and W~(6, x0); and (ii) we have to express the W~ in terms 
of the simple random walk generating function. 

2.3. Expressing P t ( Y )  in t h e  W T 

From the definition of the W~(6, 6') and the discussion in the 
preceding subsection it is clear that one can find an expression for Pt(Y) by 
summing over the number of steps n of the tagged particle, over the step 
directions 61, 62 ..... 6n, and over the lengths of the time intervals % ..... % 
separating the steps, as well as the time intervals Zl preceding the first step 
and % +1 elapsed since the last step. Since at the initial time the hole is at 
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x o, the expression for Pt(Y) depends on xo. We find, remembering the 
definition (2.6) of F,(x), 

o - = 0  

+ "'" a*l+ --+:o-I '  "'" 1 -  F o ( - 8 ,  
n = l  ~ 1 = 1  Zn--n=l r n + l = 0  81 8 n a = 0  

x6<+ . + ~ , , , y W ~ , ( ~ , - 6 ,  1). . .W~,(62,-6e)W~,(~i~,x0) (2.11) 

where in the n = 1 term it is to be understood that -~i o -- x o. The first term 
in (2.11) represents the event that at time t the tagged particle has not 
stepped yet. 

We now define for any time-dependent quantity X, the (discrete) 
Laplace transform (or: generating function) 

X(z)=- ~ z 'X ,  (2.12) 
t = O  

Furthermore, we define for any space-dependent quantity X(y) the Fourier 
transform 

X*(q)  = ~ [exp(iq. y)] X ( y )  (2.13) 
Y 

where the sum runs through the whole lattice and q takes the values 

qi = 2r&jLi ,  ki = O, 1,..., L i -  1, i = 1, 2 (2.14) 

The Fourier-Laplace transform of Eq. (2.11) for P,(y) is 

P*(q; z) = 
1-P(Xo;Z) 

1--Z 

1 
+ ~ E Y~ 1-1 - P ( -a ;  z/1 I-/~(q; z)..~ ~p, x0(q; z) 

a p 

where a and p run through +e l ,  _+e2, we have defined 

if'.,x(q; z) = [exp(iq. a)]  17V(a, - x ;  z) (2.16) 

and [ I - T ( q ;  z)] -1 is the matrix inverse of the 4 x  4 block with matrix 
elements 6, , t~-T,,p(q;z).  The F(x; z) can be eliminated from (2,15) with 
the aid of the Laplace transform of (2.6) and of (2.16), which together give 

F(x; z ) = ~  [ e x p ( - i q .  ~i)] T~,_,,(q; z), x ~ 0  (2.17) 
6 
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Substituting this in Eq. (2.15) and using that I +  T ( I - T )  1 =  (I--~)--1, 
we obtain 

,{ P*(q;z)=-i-Z-~_ z 1 + ~  ~ [ 1 - e x p ( - i q ' a )  
a p 

x [ I -  i~(q; z)]2, ~ if'~,_x0(q; z)} (2.18) 

From (2.5), (2.12), and definition (2.16) of T,,x(q; z) we have 

e q* Iz  \ 

e iq@(z) e-iq2d(z) e iq2A'(z) e - ' q 2 B ( z ) /  

where the rows and columns correspond to the lattice vectors el, - e l ,  ez, 
and - e 2 ,  respectively. We define 

~(q;  z) - d e t [ I -  i?(q; z)] (2.20) 

Evaluating this determinant, we find 

~(q;  z) = (1 - 2/} cos ql +/}2 _ .~z)[ 1 _ 2/}' cos q2 + (/},)2 _ (2z~,)2] 

+ 4d2(/} - 4 - cos ql)(/}' - 4 ' -  cos q2) (2.21) 

where, for notational simplicity, the z dependence of 4 ..... C is indicated 
only implicitly by the caret. We shall simplify Eq. (2.18) further with the 
aid of the definition 

0 p ( q ; z ) ~  ~ ( q ; z ) - ~  [ 1 - e x p ( - i q . a ) ] [ I -  T(q;z)]2, ~ exp(iq-Ji) (2.22) 
c t  

The expression (2.18) for/~*(q; z) then takes the form 

1[ 1 /6*(q ;z)=~-~_ z l+~@-l(q;z)  20[~(q;z)  [~([~,Xo;Z ) (2.23) 

A straightforward but tedious calculation yields 

U , l ( q ;  z) - V(ql, q2; A, A', /}, /}', C) 

= [(4,)2 _ (/},)2 + 2/}' cos q2 - 1 ] [/} + eiql(A - 1)](1 - e-iq~) 

- 2 ( ~ ( 4 ' - / } ' -  1)( /}-  J - e'q')(1 - c o s  q2) 

- 4iC2(4 ' - / } '  + cos q2) sin ql (2.24) 
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and from this we have by symmetry 

U-el(q; Z) = V(-ql ,  q2; A, A',/~,/~', (~) 

6~2(q; z) = V(q2, q~ ; A', A,/~',/~, C) (2.25) 

U_ o:(q; z) = V(-q2, q," .,i', A,/?',/~, C) 

Equation (2.23) for /3*(q;z), together with the expressions (2.24) and 
(2.25) for 0 and (2.21) for ~ ,  constitutes the final result of this section, and 
with this we have completed the first of the two tasks set at the end of 
Section 2.2. 

2.4. Expressing the  W T in t h e  S i m p l e  R a n d o m  W a l k  G e n e r a t i n g  
Funct ion  

The second task is to find an expression for the W, in terms of the 
simple random walk generating function. We shall need the following 
definitions and properties, which can all be found in any introductory 
discussion of random walks/8 ~2) Let Gt(x), for t = 0, 1,... and x arbitrary, 
denote the probability of finding a simple random walker at time t on 
lattice site x, given that at t = 0 it started at x = 0. Then 

~(x;z)= 1 _ ~  exp(-ip.x)  (2.26) 
L1L2 p 1 - 1/2z(cos Pl +cos  P2) 

where the wavevector p = (Pl, P2) runs through the same values as q m 
Eq. (2.14). This function satisfies 

z ~ G(x + 5; z) - G(x; z) = -cSx, 0 (2.27) 

from which, upon putting x = 0 and using that G(x; z ) =  G ( - x ;  z), we have 

1/2z[d(e~ ; z) + G(e2; z)] = G(0; z) - 1 (2.28) 

Another useful relation is (9'11'~2) 

P(x; z) = d(x ;  z) /d(0;  z), x # 0 (2.29) 

where we used that F , ( - x ) =  F,(x). The function 

~(x; z) - G(x; z) - G(0; z) (2.30) 

has the property that, whereas l imzrlG(X;Z)=Oo, the lattice Green 
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function aJ(x; 1) is finite for all x, as is easily seen with the aid of (2.26). For 
the infinite lattice it has the asymptotic behavior (s) 

N(x; 1)m - 2 1 n x ,  x ~  ~ (2.31) 
7"g 

In order to obtain an equation from which we can solve Wr x) we shall 
follow a procedure similar to the one that leads to (2.29). We first observe 
that the probability for a simple random walker (starting at t = 0 at the 
origin) to be at time t - 1  at x + f i  and at time t at x (with x r  and 
t= l ,2 , . . . )  is given by �88 We next write this quantity as the 
probability that the visit at time t to the site x was the first visit to that 
site, plus the sum on t' of the probability F,,(x) that the first visit to x has 
taken place at some earlier time t' multiplied by the probability 
�88 l_t , ( f i )  of going from x to x + fi after t - 1 -  t' steps, and to x after 
t -  t' steps. Explicitly, 

1 ~,-1 
~ G , _ ~ ( x + f i ) = W , ( f i , - x ) +  ~ Fc(x) G, ~_c(fi) (2.32) 

t '=0 

t = l , 2  ..... x r  

We multiply this equation by z', sum on t from 1 to 0% and obtain, using 
(2.29), 

z[ d(x; z) d(& z!] d--~z) l Y / ( g , - x ; z ) = ~  G ( x + f i ; z ) -  , x4=0 (2.33) 

This is the desired expression for I~ in terms of the simple random walk 
generating function (~, and with this we have completed the second task set 
at the end of Section 2.2. We specialize it first of all to the case that x is a 
nearest neighbor vector. From (2.33) and the Laplace transforms of the 
definitions (2.5) we find 

z I A(z)=~ ~(0; z) 

/~(z)=~ 0(2e 1;z) 

G2(el ;-f z) ] =  

G(0; z) A 

dZ(eli~ ) ] =  
G(0; z) J 

(2.34) 

z I G(el; z) G(e2; z)]  r d ( e l + e 2 ; z )  G(0; z) 
The expressions for A'(z) and /~'(z) are found from those for A(z) and 
/~(z), respectively, by replacing el with e2. Equivalent relations occur in 



Motion of Tracer Particle in 2D Lattice Gas 259 

refs. 1, 3, and 5 and were apparently first derived by Benoist et al. (13) From 
(2.7) together with (2.12), (2.29), and (2.30) we have the useful relations 

A(z) +/~(z) + 2C(z) =/~(e 1 ; z) = 1 + - -  

A'(z )  + B'(z)  + 2C'(z) =/~(e2 ; z) = 1 + 

i f (e l ;z)  

d(0;z) 
(r 

d(O;z) 

(2.35) 

In particular, in view of the finiteness of fq(x; 1) for all x and the fact that 
limz,l G(x ; z )=  0% we find from (2.35) 

A(1) +/~(1) + 2C(1) --- 1 
(2.36) 

A'(1) +/~'(1) + 2d(1) = 1 

Since A ( 1 ) = Z ~ = o A , ,  etc., these relations just tell us that a two-dimen- 
sional random walk is recurrent. 

2.5.  T h e  E f f e c t i v e  P r o p a g a t o r  

We now have to calculate the inverse Fourier and Laplace transform 

1 1 ~ d z  
Pt(y) = L - - ~  2 e x p ( -  iq �9 y) ~ /  z--7-Z-r P*(q; z ) (2.37) 

q 

where the integral is around the origin of the complex z plane. Hence our 
task will be to determine the analytic structure of P*(q; z). The main struc- 
ture is entirely contained in the denominator ~(q;  z) in (2.21), which plays 
the role of an effective propagator, analogous to the denominator in the 
integrand of the expression (2.26) for the simple random walk. 

It is not possible to determine the zeros of N(q; z) exactly. We shall 
therefore make a long-time expansion, for which the only knowledge 
required is the behavior of @(q; z) around its singular point nearest to 
z =  0. When q = 0 this is the point z = 1. One readily verifies this from 
(2.21), which gives 

9(0;  1 )=  1-1 - /~(1)  +.4(1)]  [1 - /~ ' (1)  + d'(1)-I 

x {[1 - - / } ( 1 ) - - 4 ( 1 ) ] [ 1 - / ~ ' ( 1 ) - - . d ' ( 1 ) ] - 4 C 2 ( 1 ) }  

= 0  (2.38) 

where the second equality follows from the relations (2.36) between A(1), 
A'(1) ..... C(1). For q different from zero this singularity shifts to z values 
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larger than 1. Hence, our small-(z-1) expansion has to be accompanied 
by a small-q expansion. This will be done separately for the three lattice 
geometries of interest in Sections 3-5. 

2.6. Simplified Formulas for a Square Geometry 

In Sections 3 and 4 we shall specialize to square geometries (an oo x oe 
lattice and an L• lattice, respectively). The extra invariance under 
rotations over re/2 then allows us to simplify the formulas derived above in 
the following way. We have 

A'~=A~, B'~=B~ 
(2.39) 

d'(z) = A(z), ~'(z) = ~(z) 

It is now useful to define 

G(z) - G(0; z) 

g(z) - -�89 [G(2e~ ; z) - G(0; z)] 

(2.40a) 

(2.40b) 

Equation (2.28) then reduces to 

1 
G(+ei; z ) = -  [G(z ) -  1] (2.41) 

Z 

and, upon using (2.27) for x equal to a nearest neighbor vector, we find 

( ) 2+ G(+el+e2;z)= ~-1 G(z ) - - j  g(z) (2.42) 

Using the general results (2.34), one then obtains the simplified expressions 

A(z)=~zz I2 1 G(z) (1-z 2) G(z) 1 

1{ , t /~(z)=~zz 2[1-z2g(z)] G(z) (1-z2) G(z) (2.43) 

1 q 
These show that the two functions G(z) and g(z) contain all important 
information. 
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3. INFINITE LATTICE 

3.1. Expansion of /~*(q;  z) for Small q and z - 1  

We shall now evaluate expression (2.37) for P,(y) for an infinite lattice. 
We first expand /S,(q; z) for small q and z - 1 .  If we let K denote the 
elliptic integral of the first kind, then for the infinite square lattice we have 
from Eqs. (2.40a), (2.40b), and (2.26) 

G(z) = = dq 1 - -  �89 q l  q- COS q2) 

2 
= -- K ( z  2) 

7~ 

l l n  - ~ - ~ ( 1 - z ) l n ( 1  z)+(9(1 z), z - + l  (3.1) 

(see ref. 14) and 

1 fl = s in2 ql 
g(z) = ~ JJ ~ dq 1 - lz(cos ql + cos q2) 

= ( 2 - 4 ) +  2 ( 1 -  z ) l n ( 1 -  z) + (_0(1 - z), z - + l  (3.2) 
7~ 

[cf. McCrea and Whipple,(~s) who calculated g(1)]. Using these expansions 
in the formulas (2.43) for A(z), /}(z), and C(z), one finds 

1 ~ 1 
. d (z )=~  41n[8/(1 - z ) ]  +2-~ (1 - z ) l n ( 1  - z ) +  (9(1 - z )  

(2  1) ~ 1 (1 - z )  ln (1-z )+(9(1-z )  (3.3) 
/}(z)= 7 - 2  4 1 n [ 8 / ( 1 - z ) ]  2zr 

rc 

C ( z ) = ( ~  - 1 )  4 1 n [ 8 / ( 1 - z ) ] + ( 9 ( 1 - z )  

From Eq. (3.3) we see that the motion of the tagged particle is strongly 
anticorrelated; the probability for the particle to step in the direction 
opposite to its previous move is ei(1)=0.5;  the probability to step in a 
perpendicular direction is C(1 )=  0.1816...; and the probability to step once 
more in the same direction is/~(1) = 0.1366 .... The leading correction terms 
in Eq. (3.3) can be used to find the long-time behavior of A,, B t, and Ct: 

7T 
Xt~_[ l+(-1) t+l]4 t ln2 t ,  t - -+oo,  X = A , B , C  (3.4) 
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X Clearly Zt=o , is finite, as it should be. Furthermore, the long-time 
behavior is compatible with the asymptotic result (2.9) for R~. 

After these preliminaries we are able to expand /~*(q;z) around 
(q; z ) =  (0; 1). To this end we first consider Eq. (2.21) for ~(q; z) and find 

1 1 1 ~(q; z)= ~ g (1--~ g2) q2 + rtg ( l +~ g) 21n[8/( l _ z) ] 

+..., q ~ 0 ,  z ~ l  (3.5) 

terms of higher order in q2 and/or in where the dots indicate 
1/ln [8/(1 - z)], and where 

g =  g ( 1 ) = 2  - 4 / ~  (3.6) 

The first two terms in this expansion can be controlled independently and 
become of comparable magnitude when 

1 q2 ,,~ (3.7) 
ln[8/(1 - z ) ]  

This relation will serve to compare orders of q to orders of i / I n [8 / (1 -  z)] 
and will eventually determine how distance scales with time in Pt(Y). 

Considering Eqs. (2.24) and (2.25) for the four Up(q; z), we find, upon 
expanding these expressions in powers of ql and q2, that the coefficients of 
the linear terms become proportional to 1 / l n [8 / (1 -z ) ]  for z +  1. But 
hence, by Eq. (3.7), they are effectively of third order in q. The coefficients 
of the quadratic terms, however, tend to finite values as z ~ 1, and we get 
explicitly 

O p ( q ; z ) - ~ - ~ g  1 - ~ g  2 q2, q--*0, z ~ l  (3.8) 

which is independent of p. It remains to evaluate 

Z x0; z) : z) 
p 

= 1 + fq(Xo; z)/G(z) 

= 1 + rtf#(x0; 1)/ln ( ~ _  z)  + .... z ~ l  (3.9) 

where we have used, successively, (2.6), (2.29), (2.30), (2.40a), and (3.1). 
From the asymptotic expression (2.31) we see that the first term in (3.9) 
dominates the remainder if the initial hole position Xo satisfies 

2 In Xo ~ l n  ( ~ _ z )  (3.10) 
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We shal henceforth consider only Xo for which this condition holds. Upon 
using (3.5), (3.8), and (3.9) in (2.23), we obtain 

1 
P * ( q ; z ) _  q ~ O ,  z ~ l  (3.11) 

(1 - z){ 1 + fq2 ln[8/(1 - z)] }' 

where we have defined 

1 2 - g  1 
f -  - -  - (3.12) 

4 n 2 + g  4 n ( n - 1 )  

Equation (3.11) is the final result of the expansion of P* for small q and 
(1 - z ) .  

3.2. Results for Pt(Y) 

Now (3.11) has to be substituted in (2.37) and the z and q integrals 
have to be carried out. The quantity ln(1 - z )  occurring in (3.11) causes the 
integrand to have a branch cut, starting at z = 1, which we may take along 
the positive real axis. Due to the factor z -  1 in the denominator of the 
integrand in (3.11), the leading contributions to the integral ' come, for 
t --* 0% from the neighborhood of z = 1. We may therefore fold the contour 
around the branch cut and integrate the discontinuity of the integrand. 
This gives 

P , ( y ) - ~  _ d q e x p ( - i q . y )  

fl ~ dz 1 fq2 
x z , + ~ z _  1 { l + f q a l n [ 8 / ( z _ l ) ] } z + ( f q Z n ) 2 ,  t ~ o o  (3.13) 

In terms of new integration variables K and w defined by 

q = (In t) - 1/2 K 

z =  l + 8/t ~' 

(3.14a) 

(3.14b) 

the expression for P,(y) becomes 

i 1 It ~(ln t) 1/2 ~- y ] 
Pt(Y) - in t (2u) 2 - .(l. ,)~,: dK exp ~ -- iK. 

f ~ dw fx2 
x - ~  (1 + 8/tw) ~+~ (1 +fic2w) 2 + (fK2n/ln 0 2, 

t ---* oO (3.15) 
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Although in the derivation of this formula the Yi (i = 1, 2) were assumed to 
take only integer values, the formula itself can also be used for noninteger 
values for the yi. We now discuss two cases. 

3.2.1. The  Scal ing Limit: y / ( l n t )  1/z Fixed, t - + D ,  y ~ o o .  
In this limit one finds from (3.15), with q = y/(ln 01/2, 

11ff  fl ~ dW Pt(Y)~-ln t (2z~)2 _co dK [exp(-- iK'q)]  fic2 (l+fwtr 

1 t (2g) 21 - dK exp( -- iK. q) 
In -oo 1 + t i c  2 

l l f f  - in t (2rr 2 ~ dK exp ( - iK"  rl) d ) ~ e x p [ - 2 ( l + f ~ ) ]  (3.16) 

The integrals on K are Gaussian and easily carried out. The remaining 
integral on 2 is found to represent the modified Bessel function Ko, and the 
final result is 

2 ( ~ - - l ) K  {f&z(zr-1))~/2 ) Y fixed, y , t ~  (3.17) 
P ' ( Y ) -  l n ~  0 \ \  ~nt  Y ' (In t) 1/2 

Hence P,(y) is non-Gauss&n! With the aid of the integral (ref. 16, p. 388) 

o~ dX x' + 2VK0(x ) = 22vF2(v + 1) (3.18) 

one easily verifies that P,(y) is properly normalized and that 

in t 
( 9 )  - - -  (3 .19)  

rc(~z - 1 ) 

The main features of the behavior of (3.17) follow from the properties I17) 

~ - l n  x, x $ 0  (3.20) 
K~ ~- ((zt/2x) 1/2 e -x, x ~ 

A particularity is that P,(y) has a logarithmic singularity when y/(ln t) ~/2 
becomes small. This provides a reason for also studying a second limit. 

3.2.2.  T h e  l i m i t  t -  oo a t  F ixed  y. Upon employing in (3.13) 
expression (3.14b), but not (3.14a), we get 

1 1 f S ~  
P~(Y) ~- In t (27r)2 _ dq e x p ( - i q -  y) 

f 
~ dw fq2 

• -~, ( l+8/ tw) ,+~(1/ ln t+fq2w)2+(fq2n/ ln t )2 ,  t ~  (3.21) 
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We now first observe that, for t--. oo and for all w < l ,  (1 + 8 t - " )  -('+~) 
tends to zero faster than any power of t. Hence, we may let the w 
integration run from 1 to oo. If in the integrand we then set t =  oo, it 
reduces to 1/fw2q 2, and the q integral diverges in the origin. Therefore, 
more care is required near q = 0, and we now employ the scaling (3.14a) in 
(3.21). Also using that, for w > l ,  (1 + 8 t  " ) - ( ~ + t ) ~ e x p ( - 8 t l  ~)-~ 1 as 
t ~ oo, we find 

1 1 If ~(ln t)l'2 i i K ' Y ]  
P'(Y) - In t (2~) 2 J~ ~(1, ~)1/2 dK exp (In ~r/2 

foo f~c 2 (3.22) 
x 1 dw (1 +fw~c2) 2 + (f~c27r/ln t) 2 

We can set t = oo in the integrand of (3.22) without creating any divergen- 
ces. This yields 

1 1 f. ('rc(ln 0 I/2 1 
P t ( Y ) -  in t (2~z)2 Iljj_~z(ln t) l/2 dK 1 + f~:------~ (3.23) 

For  t + oo the integral diverges at large ~:. Since we are only interested in 
the leading behabvio, we can write, using the value (3.12) for f,  

2(re - 1 ) f=o.  gill'2 1 
e , ( y )  _ Tn7 

In In t 
~- (~r- 1 ) - - ,  y fixed, t ~ o o  (3.24) 

in t 

This expression shows how near the origin the distribution function P,(y) 
decays to zero. It should be contrasted with the decay 

G,(y) - 1/Trt, y fixed, t --, oo (3.25) 

which follows from (2.26) for a simple random walk. 
Finally we recall that both results (3.17) and (3.24) hold subject to the 

condition that the hole is initially not too far away from the particle; 
explicitly, we should have 

2 In Xo "~ In t (3.26) 

as may be deduced from (3.10), (3.14b), and the fact that the w integrals in 
(3.16) and (3.22) do not get any significant contributions from the region 
w < l .  
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4. L x L  LATTICE 

In this section we evaluate the expression (2.37) for Pt(Y) for a square 
lattice of L • L sites with periodic boundary conditions. Since we are again 
dealing with a square geometry, we can express A(z), B(z), and C(z) in 
terms of G(z) and g(z) with the aid of the simplified formulas of Section 2.6. 
The only difference with the calculation of Section 3 is that G(z) and g(z) 
are now given not by integrals but by sums on q; we indicate this explicitly 
by writing these functions now as GL(Z) and gL(Z), respectively. The 
following calculation will be for strictly finite L. 

4.1. Expansion o f / 5 , ( q ; z )  for  Small  q and z - 1  

We must again expand GL(Z) and gL(Z) around the point z = 1. In this 
case, too, the expansion of GL(z) in powers of (1 --z)  is known(~8'~9): 

1 
Gc(Z)=L2(1-z) ~-ao(L)-a~(L)(1-z)+C[(1-z)2], z ~ l  (4.1) 

where ao(L ) and al(L) have been given by Den Hollander and 
Kasteleyn {19} (but see also ref. 18) as 

ao(L) = (2/z) in L + Cg(L ~ 

al(L)  = 0.06187... L 2 + COn L), L ~ o o  
(4.2) 

From (4.1) we see that as z ~ 1, the first term in the expansion for GL(Z) 
will dominate the remainder only if 

~l/L2ao(L), L fixed, arbitrary (4.3) 
1 - z ~ ~ 1/L2 In L, L fixed, large 

where for the lower inequality (4.2) has been used. The 1 -  z expansion of 
go(z) is easily found from (2.40b): 

gL(z) = go+ [gL--�89 -- z) + CI-(1 - z)2], z ~  1 (4.4) 

where 

gc - gL(1 ) 

4 2 (2 L --* co (4.5) 
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Substituting the expansions (4.1) and (4.4) of GL(Z) and gL(z) in the 
formulas (2.43) for A(z), B(z), and C(z), one obtains for z --, 1 

/l(z)=-~ 1 -  - ~  L2+2ao(L)-2+-s ( l - z ) + C [ ( 1 - z )  2] 

, ( ,  ),[ 1] 
/~(z)=-~ 1----~-gc --~ LZ+ao(L)-2+-s ( 1 - z ) + C [ ( 1 - z )  2] 

1 (g/. 2 1 3 
+ ~ - ~ ) - ~ [  L2 --~-52] (1 z)+(9[(1  z) 2] (4.6) d(z) =~ 

- -~ ao(L) - - 

Just as in Eq. (3.3), the quantities A(1), B(1), and C(I) represent the 
correlations between two successive step directions, but now corrected for 
finite-size effects. We make an expansion of ~ for small q as well as for 
small z -  1 by substituting these results in (2.21) and obtain 

~ ( q ; z ) = ~  - ~  + ( L 2 -  1) 

X ( gL +--~7) (1-- Z) + "'" (4.7) 

where the dots indicate terms of higher order in q2 and/or 1 - z .  This 
expansion is valid for 

1 
q2< 1, 1 -Z<L2ao(L), L fixed (4.8) 

We see from it that in the case of a finite lattice the proper scaling relation 
between q2 and 1 - z  is 

q2 ,-~ L2( 1 - z), L fixed (4.9) 

instead of (3.7). We now argue as in the case of the infinite lattice that for 
large t the important term in Up is the one quadratic in the qi- From this 
we find 

U~(q; z)--- - ~  gL + 1--~ g 2 

valid under condition (4.8). Since, just as happened in Eq. (3.8), this result 
is to lowest order independent of 11, the third quantity in Eq. (2.23) which 
we have to expand is 

l~([I, Xo; z ) =  1 + ~(Xo; z)IGL(Z) 

=l+L2(1--z)~(Xo;1)+(9[(l--z)2], z--~. 1 (4.11) 
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where we used successively Eqs. (2.6), (2.29), (2.30), and (4.1). Upon using 
for ~(x; 1) the large-x expression (2.31), we see that we can replace 
expression (4.11) by unity if 

1 (4.12) 
1 - z ,~ L2 In Xo 

an inequality which in view of (4.8) and (4.3) is certainly satisfied. Hence 
the results that we shall obtain will be independent of the starting position 
x0 of the hole. Substituting the relations (4.7), (4.10), and (4.11) in 
Eq. (2.23) for P*(q; z), we find 

1 
P*(q; z) ~- (1 - z) + D L q 2 (4.13) 

which is valid under condition (4.8) and where we have defined 

1 2 - gL (4 .14 )  
DL = 4 ( L 2 _  1) 2 + gL 

Equation (4.13) is the finite-lattice analogue of Eq. (3.11). 

4 . 2 .  R e s u l t s  f o r  P t ( Y )  

Expression (4.13) for P*(q; z) has to be substituted in (2.37) and we 
have to carry out the inverse Laplace and Fourier transformations. The 
integrand has only a simple pole at z =  1 + D L q  2, and if we shift the 
integration contour around this pole, condition (4.3) leads to 

f l/L2ao(L), L fixed, arbitrary (4.15) 
DLq2 ~ ~I /L  2 In L, L fixed, large 

After performing the z integration we obtain 

1 ~ e x p ( - i q ' y )  (4.16) 
P,(Y) ~- ~-7 (1 +DLq2) ,+I  

For t = ~ only the term with q = 0 contributes, so that P~(y )  = 1/L 2, as it 
should be. Since the denominator of the summand in (4.16) has been 
derived in a small-q expansion, we can relate the scales of t and q as 

t ~  1/DLq 2 (4.17) 

In view of condition (4.15), this means that the times to be considered are 

~L2ao(L), L fixed, arbitrary (4.18) 
t >> ~L 2 In L, L fixed, large 
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Hence, for large t we have 

1 
P,(Y) ~- ~-7 ~ exp( - i q .  y - Dcq2t) (4.1.9) 

q 

subject to the conditions in Eqs. (4.17) and (4.18). This expression shows 
that the time and space scales are connected by 

y2 ~ DE t (4.20) 

Equation (4.19) is precisely the probability distribution for a simple 
random walker which diffuses on a square lattice with diffusion constant 
DL. Using (4.14) and (4.5), we find 

1 [ = 2 + 2 ~ - 2  t 
D L - 4 ( ~ z _ I ) L  2 1-t 2 ( r t _ l ) L  2 t- ... as L ~ v o  (4.2t) 

of which the first term is the result (1.2). 
In the large-L limit we obtain from (4.19) the Gaussian distribution 

Pt(Y)-  (Tz - 1) L 2 e_(~ 1)c2y2/, (4.22) 
gt 

which, if we combine the conditions (4.18) and (4.20), is valid for 

t >> L 2 In L, y2 >> In L, L2y2/t finite (4.23) 

and subject to the obvious condition t ~ L 4, which ensures that the dis- 
tribution is not yet affected by the periodic boundaries of the lattice. 

4 .3 .  D i s c u s s i o n  

4.3.1. A Heurist ic  A r g u m e n t .  This exact finite-lattice calcula- 
tion gives support to the following heuristic argument. When the hole is 
near the tagged particle at site y, it needs rl ~ L2 steps before it reaches one 
of the periodic boundaries (with respect to the particle) situated at 
xl  = y l  +_ L/2 and x z = Y2 ~ L/2. While executing these steps, it will cause 
the tagged particle to undergo a mean square displacement Ay 2, which, on 
the basis of the infinite-lattice calculation, is given by 

Ay 2 ,,~ In z! ~ in L (4.24) 

After it crosses one of the two boundaries, the hole will return to the 
particle from a completely uncorrelated direction (with respect to one of 

822/'53/'1-2-18 
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the two Cartesian directions). The time r2 needed, after crossing, to return 
for its next visit to the tagged particle is 

% ~ L 2 In L (4.25) 

(This is because the number of new sites visited by the hole after the instant 
of crossing increases as ~r2/ ln  %, see refs. 20 and 21; and this number 
should equal L 2 if the tagged particle is to have a reasonable probability to 
have been visited again.) Hence, the motion of the tagged particle can be 
decomposed into uncorrelated time intervals of length ~1 + 22 ~ T2 ~ L 2 In L 
during each of which it accumulates a mean square displacement 
A y  2 ~  In L. Its total mean square displacement after a time t therefore is 

y2 ~ ( t/.c2) Ay2 ~ L -  2t (4.26) 

Not  only is this in full agreement with the exact result (4.22), but it also 
explains the conditions of validity (4.23). 

4.3.2.  C o r r e l a t i o n  F a c t o r .  If one is just interested by the result 
(4.14) for the diffusion constant of the tracer particle, the following 
shortcut is possible. The diffusion constant of a random walk with 
correlations between successive jumps can be written (22-24) as the diffusion 
constant of a corresponding walk with the same jump frequency but 
uncorrelated jumps, times a correction factor fcorr" For the latter one can 
derive (23,24) 

1 + (cos 0 )  
foorr = (4.27) 

1 - (cos 0 )  

where 0 is the angle between two successive jump vectors and ( . . . )  is the 
average over all pairs of successive jumps. 

In our specific case we therefore have 

D L = D~162 (4.28) 

where D ~ refers to the corresponding uncorrelated walk. Both foo~r and D ~ 
are easily calculated. First, from the definition of A(z), /~(z), C(z), and the 
smal l - (z -  1) expansion (4.6) we find that 

(cos 0 ) =/~( 1 ) - A ( 1 ) = - �89 gL (4.29) 

For  L ~ oe the result for fr for the infinite square lattice, as was 
evaluated by Schoen and Lowen, (2s) is recovered. Second, 4D~ is equal to 
the jump frequency of the tracer particle, i.e., to the fraction of all time 
steps for which the hole displaces the tracer particle. In a moving coor- 
dinate system in which the tracer particle is at rest, the hole will occupy the 
L 2 - 1 remaining lattice sites with equal probability. From four of these it 
can make, with probability 1/4, a jump across the tracer particle, so that in 
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the original coordinate frame the tracer jump frequency, and hence 4D ~ is 
given by 

4D~ = 1/(L 2 -  1) (4.30) 

Upon combining Eqs. (4.27)-(4.30), one arrives directly at the expression 
(4.14) for DE. 

4.3.3. C o n s t r a i n e d  Dynamics .  The problem of Brownian 
motion on a finite L x L lattice with only one vacancy was proposed by 
Palmer (6) as a microscopic model of constrained dynamics. Such models 
are of great interest, since constrained dynamics is held responsible for 
"slow" (i.e., slower than exponential) relaxation in many physical systems 
(e.g., in spin glasses and ordinary glasses). One slow decay law that has 
received a great deal of attention is the "stretched exponential decay" 
X ( t ) ~ e x p [ - ( t / t o ) P ] ,  with 0 < p < l .  Such decay is known to occur, in 
particular in microscopic diffusion models that possess quenched 
randomness (~) or in relaxation models with hierarchical constraints. (26~ It 
would be extremely interesting to know if translationally invariant (as 
opposed to hierarchical) lattice models like the one studied here, which is 
constrained by the single occupancy condition at each site, can also 
produce stretched exponential decay. Computer simulation (6) of the model 
of this section for values of L up to L =  64 preliminarily suggested an 
approximate stretched exponential behavior in the main decay regime. For 
the Manhattan distance l Yll + [Y2k considered in ref. 6 we predict, however 
[indicating the average with respect to the distribution (4.22) by angular 
brackets ] 

([yl  j + [y21 )2 - ~(~ _4t1) L 2 = 0"5945"'" ( f  -5) (4.31) 

valid in the regime (4.23), for large L, and as long as t.~ L 4. Hence, this 
purely diffusive behavior (albeit on a time scale L:) excludes the 
appearance of stretched exponentials. 

5. S T R I P  O F  W I D T H  /_ 

In this section we study the t --. ~ limit of the probability distribution 
Pt(Y) on a strip of finite width L in the Y2 direction and which is infinite in 
the Yl direction. We proceed again via an expansion of the expression 
(2.23) for P*(q;z) for small ql ,q2,  and 1 - z .  In this section we shall 
denote the function (~(x; z) of Eq. (2.26) as (~c(x; z), so that 

1 c i 1 f~ e x p ( - i q , x l - 2 7 r i k x z / L )  (5.1) 
d L ( x ; z ) = z  k=o'2"~ - .  dql 1 - �89  
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From the general expressions (2.34) for A(z), A'(z),/~(z), /~'(z), and C(z) 
we see that we need GL(X; z) for x = 0, el, %, 2el, 2%, e~ + e2. We can, for 
all these cases, perform the ql integration in (5.1) and find, for L~> 2, 

~L(o;  z) = C~,o(Z) 

(~L(el  ; Z) =2 [CL,o(Z)_ 1]  - -  CL, I(Z ) 
Z 

(~L(e2; Z) = CL, I(Z ) 

dL(2e2 ; z)  = 2CL,2(z) -- Cc,o(Z) 

d L ( e l  + e2; z) = 2  CLdz )_  CL,2(z) 
Z 

where we have used the abbreviation 

1 L 1 cosn(2rrk/L) 
CL,n(Z)~Zk~O= ( [ l_ �89  n = 0 ,  1,2 (5.3) 

As a check, one may verify that the expressions (5.2) satisfy Eq. (2.27) for 
x =0,  el, e 2 . 

5.1. Expans ion  o f / ~ * ( q ; z )  for small  q and z - 1  

Expanding the expressions (5.2) in powers of 1 - z  is straightforward, 
and we obtain 

(~L(0; Z) -- 1 L( I_z ) I /2  FSL. 1+(9(1--Z) 

Gc(el "Z ) -  1 , L ( I _ z ) I / 2 + S L .  1+2SL, t - - 2 + 2 ( 1 - - Z )  ~/2 + ( 9 ( l - z )  

1 
~L(e2 ; z)  = L(1 - z )  1/2 + SL. i --2SL.1 + (9(1 --z) 

1 
(~L(2el ;Z) = L(1 - - Z )  1/2 ''1- SL'-I "~- 8SL'I -~ 8SL'3 - -  8 

8 
+ Z (1 - z) 1/2 + (9(1 - z) 

GL(2e2; z) -- 1 L(1- -z)  ~/2 F SL_~--  8SL,~ + 8SL,s + (9(1--Z) 

1 2 
()L(el + %; Z) -- L(1 -- z) m + SL'- ~ -- 4SL,3 + -~ (1 - Z) 1/2 + (9(1 -- Z) 

(5.4) 
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where we in t roduced the sums 

S _ 1 L - 1  s in ' ( rck /L)  
k~_l [1 + s in2(rrk /L)]  ~/2' n = - 1 ,  1, 3 (5.5) L,n~ Z 

for which a large-L expansion gives 

SL, 1 = (2/~) In L + (9(L ~ 

SL,~ = 1/2 + (9(L -~) (5.6) 

SL ,  3 = 1/Tz + (9(L 1) 

By substituting (5.4) in (2.34), we find the s m a l l - ( 1 -  z) expansion 

A ( z ) = I - S c , 1 -  (1--SL,~)2+~-7 L ( 1 - - z ) l / z + c ( 1 - - z )  

A ' ( z ) = S L ,  I - S  2 L ( 1 - z ) l / Z + C ( 1 - z )  L,1 

I 1] J ~ ( z ) = S L ,  I ' ~ - 2 S L , 3 - - 1 - -  ( l  --  SL, I)2 -- ~-~ L ( 1 - z ) l / Z + C ( 1 - z )  (5.7) 

J~t(Z) = - - S L ,  1 q- 2 S L ,  3 - -  S~,~ L(1 - z) 1/2 -~ (9(1 - z) 

1 
C(z )  = ~ - SL, 3 -- SL, l(1 -- SLA ) L(1 -- z)  U2 "-k 0(1 -- z) 

The quantities ei(1),..., C(1) represent again the correlat ions between two 
successive step directions; hor izontal  and vertical steps are clearly 
inequivalent now. Substituting the expansions (5.7) in the formula (2.21) 
for @(q; z), one finds 

@(q; z) ~- 2(1 - 2SL,3)(3 -- 2SL,1 -- 2SL,3)(1 + 2SL,1 -- 2SL,3) L(1 - z)  ~/2 

+ (1 + 2SL,~ -- 2SL,3)(1 -- 2Sz,3)(SL.~ + Sc,3 - 1/2) q~ 
(5.8) 

+ (3 - 2SL,1 -- 2Sc,3)(1 -- 2Sc,3)(Sc,3 - SL,~ + 1/2) q~ 

as q--+0, z ~  1 

Hence, between the scales of the qi and of 1 - z  we now have the relation 

q2 ~ L(1 - z)  1/2, L fixed (5.9) 

Taking this relation into account,  we find once again that  the leading terms 
in the expansion of Up(q; z) a round  (q; z) = (0; 1) are the ones quadrat ic  in 
the qi. Explicitly, 

0p(q; z) -~ - ( 1  - 23c,3)(1 q- 2SL, , -- 2Sc,3)(Sz,1 + S L ,  3 - -  1/2) q2 

- (1 - 2Sc,3)(3 - 2 S L , ,  -- 2Sc ,3 ) ( -  SL,~ + SL,3 + 1/2) q2 ~ 

q --+ 0 and z --+ 1 (5.10) 
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which is independent of the index Ii. Furthermore, one can check that 

m(p, X o ; z ) = l + O [ h ( x o ) ( 1 - z ) l / 2 ] ,  z----~l 
[i 

(5.11) 

where h(xo) is a function behaving ~ IXo, l l for large Xo, 1 , We shall therefore 
continue our calculation supposing 

IX0,11 (1 --z)l/2 ~ 1 (5.12) 

Upon substituting the results (5.8), (5.10), and (5.11) in Eq. (2.23) we find 
after some algebra that 

I SL, 1 -}- SL, 3 -- 1/2 ql a 
P*(q; z) -~ (1 - z) ~/2 + 2(3 - 2SL.I -- 2SL.3) L 

1/2 -- SL 1 + SL 3 q2] - -  1 

1 
• ~ for q + O ,  z--+l (5.13) 

5.2. Results for  P t (Y)  

The inverse Fourier and Laplace transform (2.37) reads in this case 

Pt (y )=Lq2~-~  -~ dql [ e x p ( - i q ' y ) ] ~  i z-TZ-7/3*(q;z) (5.14) 

The main contribution to this integral will once again come from the 
region (q, z ) ~ ( 0 ,  1). Since q2 takes discrete values separated by 2rolL, 
Eqs. (5.8) and (5.9) now show that when ( 1 - z ) l / 2 ~ L  3, the expression 
for ~ can become ~ L 3 only for q2 = 0. We shall abbreviate 

( S L ,  + SL3 -- 1/2 ~ 1/2 
7c - \ 3  -' 2SL,1 '- 2SL,3J (5.15) 

which for large L becomes 

1 
7L ~ [2(n - 1)] 1/2 (5.16) 

Using fi*(q; z) from Eq. (5.13) in (5.14), keeping only the q e = 0  term, and 
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deforming the integrat ion con tour  in the complex z plane in the same way 
as was done  for the infinite lattice, one finds 

1 l f ~  
Pt(Y) ~- ~ ~ dql  exp( - iql Y l )  

--g 

1 dz 2L72ql 
x-~d l  z~+~ 4 L 2 ( z _ l ) 3 / 2 + y 4 q 4 ( z _ l ) 1 / 2  , t ~ c ~  (5.17) 

After scaling 

z =- 1 + x2/ t  

q l =- tr 

we get, with ~ - y l / t  U4 fixed and for t --, o% 

foe f o ~ e - x2 
Pt(y)  - 27z2L2t1/472 _ ~ d~: K2e -'~r d x  x-T-~74~c4/4L2 

_ Y 2 f ~ 
27c2L2t1/4 d~c x2e - i ~  

- - o o  

(5.18a) 

(5.18b) 

Yo X ~ d)v e -~(~4'~4/'4L2) d x  e -(1 + ~.)x2 (5.19) 
o o 

N o w  carrying out  the in tegrat ion on x and changing the variable 2 to 
~ - - 1  2 2 )1/2__ =~TZ~C [ ( 2 +  1 1], we find 

l f ~ d ~ c e x p ( - i ~ c ~ ) f o ~ d # e x p I - ( l ~ 2 + l ~ 7 2 L - - ~ 2 ) ]  P'(Y) - rc3/2Ltl/4 o~ 

- rcL1/2t1/47L du exp( - u  4) exp 47~ u i 

Yl 
t ~ 0% ~ = t- ~ fixed (5.20) 

where in the last step we have per formed the integrat ion on ~c and set 
= u 2, Instead,  we could have done  the ~c integrat ion in (5.19) first to find 

(ref. 27, p. 409) 

P / (y)~-  - du e x p ( - u  4) exp - u  zcL1/2t1/47 L 

x cos + u 

t --* oo, ~ = y l / t  TM fixed (5.21) 
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where we have put x = u 2. Neither of the integral representations (5.20) or 
(5.21) of P~(y) can, to our knowledge, be evaluated analytically. However, 
both show that P,(y) has the scaling form 

2 (lYl I L1/2~ 
P'(Y) ~ 7cL1/2ll/4]) L ~ 7L-tl/---s /I 

Yl 
ly~l, t ~  0% ta/---- 7 fixed, Lfixed (5.22) 

It is again easy to verify, especially via (5.20), that P,(y) is properly 
normalized and that its variance in the Yl direction is given by 

t 1/2 
2 ~ tl/2..~ (5.23) ( y 2 ) = ~ Z  -- 1/2(g__ 1)Z , Z--),oo 

Both (5.2_0) and (5.21) are useful for making asymptotic expansions. With 
s= ]if x/L/TL one easily finds from (5.20) 

~_ 3 $4/3 ~ , ~-(s)=fo~ duexp[_ (u4+~_~) 1 (6)1/2s 1 / 3 e x p ( - ~  
/ 

S ---+ oO 

(5.24) 

and from (5.21) 

~-F ~ - 5  +~s  F ~ ) ,  s~O (5.25) 

These relations determine the scaling behavior of Pt(Y) for large and small 
values of the combination [YI[ t-l~4. In particular, P,(y) has a kink at 
Yl t-i/4-= O. Furthermore, since the calculation is also valid for t ~ ~ at 
fixed y, we immediately find 

2 r(5  
P,(y) _~ rcL1/2tl/47L \ ~ j ,  y fixed and t ~ oe (5.26) 

5.3. Discussion 

Root-mean-square displacements increasing with time as t 1/4 are 
known to occur in several one-dimensional systems. An example is the 
reptation model introduced by de Gennes (28) to describe the motion of a 
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polymer chain in a melt or dense solution. An example closer to the model  
of this section is a strictly one-dimensional  chain (a strip of width L = 1) on 
which impenetrable particles execute Bownian mot ion  in the presence of a 
f in i t e  density of vacancies. (See ref. 4 for a survey of work on this problem.) 
It was shown by Harris (29/that in such a system the rms displacement of a 
tagged particle increases a s  11/4, and, moreover,  that  its distribution 
function approaches  a Gaussian for long times. For  these t 1/4 dependences 
several heuristic explanations are known  (see, e.g., ref. 30). In  our  case the 
heuristic a rgument  runs as follows. With  respect to the hole, the tagged 
particle position y may  be considered in good  approximat ion  as an 
immobile origin. In a time t the hole, performing a simple r andom walk, 
will cross the vertical axis xl  = Yl a number  of times ~ x / ~ .  But on each 
crossing, since the strip has a width L/> 2, the hole will miss the tagged 
particle with a finite probability,  which will destroy the correlat ion between 
previous and later horizontal  displacements of  the particle. Hence, the 
particle will undergo --~x/-t uncorrelated horizontal  displacements, which 
directly leads to the t ~/4 law. Finally, a model  for which this law is 
immediately evident is the r andom walker on a r andom one-dimensional  
path studied by Kehr  and Kutner.  (7~ Moreover ,  a l though there is no direct 
connect ion with our  model,  these authors  find the same scaling function 
(5.20). 
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